II B.Tech I Semester(R09) Supplementary Examinations, May 2011 STRENGTH OF MATERIALS-I
 (Civil Engineering)

Time: 3 hours
Max Marks: 70

Answer any FIVE questions
 All questions carry equal marks

1. (a) A bar of length L tapering in diameter uniformly from (D+a) at one end to (D-a) at the other is subjected to an axial load P. Prove that the error involved in using the mean diameter in calculating the Young's modulus is $(100 / D)^{2}$ percent.
(b) A steel bar of length 20 cm and $5 \mathrm{~cm} \times 5 \mathrm{~cm}$ in section is connected at its end to an aluminum bar of 25 cm length and $8 \mathrm{~cm} \times 8 \mathrm{~cm}$ in section, such that they have a commen longitudinal axis. Find the load which will reduce the total length by 0.25 mm . Find also the total work done Take $\mathrm{E}_{s}=200 \mathrm{GPa}$ and $\mathrm{E}_{a}=70 \mathrm{GPa}$
2. (a) Define the 'Beam' and the type of action and deformation it undergoes.,
(b) Draw the S.F and B.M diagram for a S.S.B of span L loaded with UDL of W KN/m.
3. What do you understand by section modulus? Obtain the dimensions of the strongest rectangular section that can be cut from a circular \log of wood of 30 cm diameter.
4. Find the maximum shear stress induced by a load of 4KN in the vertical section of a hollow beam of a square section if the outside width is loeal and the thickness of material is 2 cm .
5. A 6.5 m long cantilever carries a uniformly distributed load over the entire length. If the slope at the force end is 1^{0} (one degree), what is the deflection at the free end?
6. Write the expressions for naximum slope and deflection of a cantilever beam with a point load at free end.
7. Draw Mohrs circle for direct stresses of $45 \mathrm{~N} / \mathrm{mm}^{2}$ (tensile) and $25 \mathrm{~N} / \mathrm{mm}^{2}$ (compressive) and find the magnitude and direction of resultant stresses on planes making angles of $30^{\circ} \& 60^{\circ}$ with the plane of first principal stress. Also find normal \& tangential stress.
8. According to theory of max shear stress, determine the diameter of bolt which is subjected to an axial pull of 9KN together with a transverse shear force of 4.5 KN . Elastic limit in tension is $225 \mathrm{~N} / \mathrm{mm}^{2}$. F.S $=3 \& 1 / \mathrm{m}=0.3$.
